Programmable and Adaptive Scheduling for
Distributed Systems

Yuyao Wang Xiangfeng Zhu

Ratul Mahajan

Stephanie Wang

University of Washington

Abstract

Existing frameworks for managing distributed systems hard-
code scheduling policies and their implementations (e.g., cen-
tralized vs. decentralized), limiting customization and hurt-
ing performance across diverse applications and workloads.
We argue for an adaptive scheduling approach, where devel-
opers express policies in a high-level, framework-agnostic
DSL, and a compiler generates optimized implementations
based on policy semantics, workload characteristics, and
execution environments. We demonstrate that our compiler-
guided approach can significantly improve both scheduling
quality and performance.

CCS Concepts

+ Networks — Programming interfaces; Network re-
sources allocation.

Keywords
Resource Scheduling, Distributed Systems

ACM Reference Format:

Yuyao Wang, Xiangfeng Zhu, Ratul Mahajan, Stephanie Wang. 2025.
Programmable and Adaptive Scheduling for Distributed Systems.
In The 24th ACM Workshop on Hot Topics in Networks (HotNets °25),
November 17-18, 2025, College Park, MD, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3772356.3772391

1 Introduction

Distributed computing has become the dominant paradigm
for large-scale applications from LLM training and infer-
ence to data processing and video analysis [4, 9, 11, 36].
Many such applications decompose work into fine-grained
(sub-second or sub-100-millisecond [28]) tasks, driven by
paradigms such as serverless computing, microservices, and

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

HotNets 25, College Park, MD, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772391

real-time streaming processing [19, 35]. Consequently, effi-
cient and high-quality scheduling, i.e., dispatching tasks to
nodes, is crucial for application performance [29].

At the same time, applications are becoming more diverse
and have disparate scheduling concerns. A video analysis
application may want to de-prioritize the processing of low-
priority frames [22], which can be implemented via task
queue ordering heuristics, whereas LLM serving may want
locality between tasks and nodes to reduce KV cache re-
computation [37]. To efficiently serve such different needs,
developers must be able to customize scheduling [1].

However, today’s frameworks for running distributed ap-
plications support limited customization of scheduling. They
offer a set of predefined scheduling policies with low-level
knobs and they hard-code an implementation approach (e.g.,
centralized or decentralized). For example, Ray [25] allows
developers to provide hints that help select one of the avail-
able scheduling policies, and it uses a decentralized imple-
mentation with one scheduler instance per node for scala-
bility [5]; Kubernetes has a fixed policy decision workflow
which developers can influence at certain extension points
using Go plugins, and it uses a centralized implementation to
ensure strong consistency of scheduling information [2, 3].
This state of affairs is problematic for two reasons.

Limited policy expressiveness. Many policies of interest
cannot be expressed in current frameworks. For instance,
most schedulers follow a sequential procedure of selecting
a task first and then choosing the node for that task. If task
performance depends on the node, this procedure cannot
implement a policy that aims to maximize throughput by
minimizing the time until the next task completion because
that requires reasoning about combinations of tasks and
nodes. When developers cannot express desired policies,
they have to implement their own schedulers from scratch
(or heavily modify the framework), leading to substantial
engineering burden [6, 7, 23].

Poor application performance. Application performance
depends on the speed and quality of scheduling decisions,
which in turn depend on how the scheduling is implemented.
Sub-optimal implementations can hurt scheduling speed
when a scheduler instance cannot make decisions fast enough,
and it can hurt quality when the decisions are based on

https://doi.org/10.1145/3772356.3772391
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772356.3772391

HotNets "25, November 17-18, 2025, College Park, MD, USA

stale information. Unfortunately, the optimal implementa-
tion depends on several factors, including policy semantics
(e.g., whether the policy uses global information), deploy-
ment variables such as number of nodes and inter-node la-
tency (which determines the cost of gathering information
about nodes), and incoming task rate (which determines
how many decisions per second need to be made). Imple-
mentation choices go beyond centralized or distributed and
include how sub-modules are implemented (e.g., information
on nodes’ current load can be gathered via periodic heart-
beats or via probing). Hard-coded implementations of cur-
rent frameworks do not adapt to such dynamic, application-
specific factors, which can degrade application performance.

Both problems above stem from the fact that today’s sched-
ulers are implemented in a low-level, framework-specific
way. We argue that scheduling policy specifications should
be decoupled from implementations, and argue for a different
approach based on two principles:

(1) High-level programmability. Developers should be
able to express application-specific scheduling policies
in a concise, framework-agnostic manner.

(2) Adaptive execution. The system should automatically
adjust the implementation strategy based on current
conditions to optimize performance.

We propose a language- and compiler-based approach
in which developers specify scheduling policies in a high-
level DSL (domain-specific language) and the compiler gen-
erates an optimized implementation that can be dynamically
plugged into application frameworks. The implementation
adapts to policy semantics, workload characteristics, and
deployment environments.

We outline ideas on how to realize this approach. Our
DSL allows developers to specify task and node scoring poli-
cies as well as scheduling state updates throughout the task
lifecycle (arrival, dispatch, completion, etc.), which offers
greater flexibility over prior declarative abstractions [31]
and enables a richer space for optimization. To deploy the
policy, the compiler searches for an implementation plan that
(1) satisfies throughput requirements, (2) minimizes sched-
uling overhead, and (3) bounds the quality gap to an ideal,
omniscient scheduler within a developer-acceptable range.
Preliminary experiments validate core aspects of our design.

2 Motivating Example: DRF-LB

To illustrate why today’s rigid scheduling frameworks fall
short, consider a simple example policy: DRF-LB, which com-
bines Dominant Resource Fairness [12] (DRF) with load bal-
ancing (LB). It aims for fair resource allocation across tenants
while also distributing tasks evenly across the cluster. As
shown in Algorithm 1, each task ¢ contains its submitter ten-
ant t.tenant and its required execution resource vector t.rvec.

Wang et al.

Algorithm 1 Dominant Resource Fairness + Load Balancing
Scheduling Policy (DRF-LB)

: function DOMINANTRESOURCE(task)
rvec < ResourceVector|[task.tenant]
return max,{rvec[r]/capacity[r]}
: end function
: function SCHEDULE
Sleep until any of the following cases happen:
case 3 pending tasks:
Pick the task ¢ with the smallest DOMINANTRE-
SOURCE(t) (break ties according to arrival time)
9: Pick the least-loaded node n and assign ¢ to n
10: ResourceVector[t.tenant] += t.roec

1
2
3
4
5
6
7
8

11 case task ¢t completed:
12: ResourceVector|t.tenant] -= t.rvec

13: end function

The scheduling policy consists of two key pieces of logic:
(1) DRF: DOMINANTRESOURCE computes a tenant’s dominant
resource share as the maximum ratio of its resource usage to
the corresponding cluster capacity across all resource types,
which is called in Line 8 to pick the task whose submitter has
the smallest share. (2) LB: Line 9 probes current load across
nodes and places the task on the least-loaded one. To ensure
real-time fairness, the per-tenant resource usage needs to
be updated upon task dispatching (Line 10) and completion
(Line 12).

Although the policy only involves simple computations
and state updates, developers are unable to easily implement
DRF-LB. Distributed systems schedulers that offer a menu
of pre-defined policies, such as Ray, do not include it as an
option, and implementing it in schedulers that offer low-level
knobs, such as Kubernetes, would also be difficult because
they do not offer an extension point for customized logic on
task completion.

Even if developers are willing to invest engineering ef-
fort in writing their policy from scratch, they would be lim-
ited to the scheduling architecture of their target frame-
work. The two most common architectures today are central-
ized [2, 13, 17] and decentralized [5, 29, 30] architectures. In
centralized systems (Figure 1a), all tasks go through a single
scheduler in the control plane, while in decentralized systems
(Figure 1b), incoming tasks are load-balanced across multiple
scheduling instances which make independent scheduling
decisions and optionally rely on a centralized store for syn-
chronizing state [8, 30].

Importantly, the right choice of the architecture depends
on the application and its workload. For DRF-LB, central-
ized scheduling offers strong fairness guarantees—ensuring
tenants receive their fair share of resources—but becomes

Programmable and Adaptive Scheduling for Distributed Systems

Scheduler
(DRF+LB) |"
‘ Scheduler -

‘u (DRF+LB)
Scheduler |- .
(DRF+LB)

(b) Decentralized

Scheduler
(LB)

Tasks(scheduler | | [Scheduler
(DRF) (LB)

“.| scheduler
(LB)

~———

(c) Hybrid

Tasks Scheduler
(DRF+LB)

(a) Centralized

Figure 1: Scheduling Architectures. Solid arrows stand
for task submission and dispatching, and dashed ar-
rows/lines stand for internal communications during

scheduling.

a bottleneck under high task arrival rates. Decentralized
scheduling scales better, but can compromise fairness (and
even cause starvation in extreme cases) because (1) each
scheduler instance is unaware of the potentially existing
task candidates with higher priority on other schedulers,
and (2) local dominant shares are not up-to-date and thus
cannot accurately reflect the real-time resource allocation
ranking among tenants. Existing systems do not adaptively
choose the appropriate architecture; they implement one,
which all applications must use at all times.

In fact, there exists another architecture that is promising
for some applications and policies but is not implemented by
existing frameworks. Observe that DRF-LB has two pieces of
logic with varying characteristics: (1) the DRF logic (DRF)
requires global task information and is thus highly sensitive
to architecture choice-executing it in a centralized manner is
desirable; (2) the load balancing logic (LB) is slow as it probes
the current load across nodes, especially when the cluster is
large and the network latency is high, but its effectiveness is
independent of the architecture. Thus, we can split the logic
and do scheduling in a hybrid manner, as shown in Figure 1c:
the centralized scheduler takes in all the submitted tasks,
executes the DRF logic to pick the next task to be scheduled,
and forwards the task to one of the decentralized schedulers,
which executes the load balancing logic. In this way, part of

HotNets "25, November 17-18, 2025, College Park, MD, USA

500
a
jon
g 450 ///
5
%400 _
S —— Centralized
o 350 —— Decentralized
Hybrid
300 v

300 350 400 450 500 550 600 650 700 750 800 850
Task Incoming Rate (req/s)

(a) Goodput
1.00
x
[
2
=0.95
@
[
£
‘©
20.90 —— Centralized
3 —— Decentralized
Hybrid

5
300 350 400 450 500 550 600 650 700 750 800 850
Task Incoming Rate (req/s)

(b) Fairness

Figure 2: Implementation Comparisons

the logic on the critical path is still distributed to increase
scalability, and the quality of fairness enforcement is ensured.

We demonstrate empirically that the scheduling archi-
tecture matters. We simulate different implementations of
DRF-LB under various task arrival rates and measure the re-
sulting goodput and fairness. Decentralized scheduling uses
a Redis store for periodic synchronization. We construct a
multi-tenant workload with 3 active tenants of equal priority,
among which the "greedy" tenant’s task submission rate is 3
times higher than the others. The cluster has 12 nodes, each
with a queue holding incoming tasks and a single-threaded
executor running tasks in FIFO order. We also implement
a simple overload control mechanism that drops timed-out
tasks.

Figure 2a compares the goodput of different architectures.
As expected, decentralized architecture has the best scal-
ability, whose ~510 req/s goodput is bottlenecked by task
execution time. Hybrid architecture has higher goodput than
the centralized version as part of the scheduling logic is
distributed, but neither can fully utilize the computation
resources (i.e., nodes) under high load.

Figure 2b compares the fairness using the Jain Fairness
Index [18] between tenants on their service ratio [27], i.e., the
ratio between their actual and expected goodput according to
max-min fair share. The decentralized architecture, although
producing a larger total goodput, fails to enforce fairness

HotNets "25, November 17-18, 2025, College Park, MD, USA

Rate Goodput | Fairness | Best Architecture
<400 | C=D=H | C=D=H | Any (C preferred)
400-450 | D=H>C | C=D=H D,H
450-510 | D>H>C |C=D=H D
>510 |D>H>-C|C=H>D H

Table 1: Best architecture. Each column shows the com-
parison between implementations from a specific per-
spective. C, D, and H stand for Centralized, Decentral-
ized, and Hybrid implementations, respectively.

between tenants. When the task arrival rate is high, non-
greedy tenants suffer. In contrast, the centralized and hybrid
architectures are fair across the workload regime.

Table 1 summarizes the conclusions from our experiment.
When the load is low, all architectures behave similarly, and
the centralized may be preferred because of its simplicity.
When the workload increases and scheduling becomes the
system bottleneck, decentralized implementation outper-
forms in scalability. However, when there exists significant
resource contention, the hybrid implementation should be
selected to ensure fairness.

While our experiment focuses on the trade-off between
scheduling architectures, the space of implementation op-
timization goes further. Other opportunities include trad-
ing operation accuracy for speed (e.g., rely on cached in-
formation instead of remote probing) or parameter tuning,
and whether they are effective is policy- and workload-
dependent. These observations highlight the need for a new
scheduling paradigm adaptive to dynamic environments.

3 Rethinking Scheduling for Distributed
Systems

To overcome the limitations of today’s hard-coded, one-size-
fits-all schedulers, we argue for the decoupling of scheduling
policies and implementations, and propose a new schedul-
ing approach that supports customized policies and adap-
tive implementations. The framework provides a high-level,
framework-agnostic DSL that enables developers to express
decision-making and state update logic. A compiler then
determines how to realize the scheduling policy in the de-
ployment environment. The exact implementation strategy
depends on three key factors: (1) the semantics of the sched-
uling policy, such as whether it requires global state, is
compute-intensive, or benefits from parallelism; (2) workload
characteristics, including task arrival rate, burstiness, and
task duration; and (3) network conditions, such as latency
and bandwidth across nodes. As these factors change, the
framework is responsible for dynamically adapting the imple-
mentation—by switching architectures, tuning parameters
such as heartbeat period, auto-scaling schedulers, etc.—to
maintain optimal performance.

Wang et al.

4 Key Research Questions

Realizing the approach requires answering the following
research questions.

Q1: What abstractions should our DSL provide to express
scheduling policies? The abstraction should be high-level,
yet expressive enough to capture a wide range of scheduling
policies. It should allow developers to specify not only deci-
sion constraints and optimization objectives—which previ-
ous works mainly focus on—but also task ordering strategies
(e.g., fairness rules) and state-maintenance logic that governs
how scheduling information evolves over time. Moreover,
it should facilitate reasoning about internal states, as this is
crucial for informed implementation strategy choices.

Q2: How to quantify the scheduling quality drop introduced
by concrete implementations? Developers typically design
scheduling policies assuming an ideal, omniscient scheduler
with perfect global knowledge and zero latency. In practice,
however, information is distributed and delayed, and every
real implementation is an approximation of this ideal. For ex-
ample, a centralized architecture, besides limited throughput
under high load, might also suffer from information stale-
ness if remote information was periodically collected via
heartbeats. In addition, if the implementation includes de-
centralized decision-making, schedulers not aware of others’
actions may independently choose the same node as the
target, leading to a herding effect.

The gap between practical implementations and ideal ones
can manifest as higher task completion times, throughput
bottlenecks, fairness violations, or increased peak resource
usage. The challenge lies in defining a unified model to
capture these deviations, quantifying them for each pol-
icy—implementation pair, and using these metrics to inform
deployment decisions.

Q3: How to automatically find and switch to optimized im-
plementation? Given a scheduling policy specification, the
system needs to (1) identify optimization opportunities , (2)
select the most suitable implementation based on the current
conditions and then configure the communication pattern be-
tween schedulers to support it, and (3) enable seamless tran-
sitions between implementations when conditions change,
without disrupting active workloads.

5 A Potential Approach

We outline a potential approach to realize our vision. Devel-
opers describe expected scheduling policies in our DSL. The
framework consists of a monitor that continuously tracks
workload information and produces performance profilings,
and a compiler that computes and generates the best imple-
mentations of the policies based on the monitor statistics.

Programmable and Adaptive Scheduling for Distributed Systems

Scheduling s

/
task N
S ode
@ OnArrival :Dl]]:’
@‘ ________ 't3 (task, node) . @ ® onFinish
(@ onbispatch
\State Score / Executor:

Figure 3: Abstraction of Task Lifecycle.

The underlying cluster contains programmable scheduler in-
stances that accept scheduling executables to coordinatively
realize various implementation plans.

5.1 Programming Abstractions

Inspired by existing scheduling DSLs such as DCM [31],
our abstraction allows developers to define the task format
as a struct and use the information to specify scheduling
constraints and objectives. However, we significantly differ
from previous works in the following aspects.

Scheduling target. Figure 3 shows the abstraction of a
task’s lifecycle, including scheduling and execution. Our
abstraction allows developers to specify a (task, node) pair
in each iteration as the scheduling decision, meaning that
task is expected to be dispatched to node. Specifically, we re-
quire developers to complete a function Score(task, node),
which returns a score for any given (task, node) pair. The
scheduler will use the function to evaluate all possible task
and node combinations and select the pair with the best
score. We choose the scoring abstraction because of its sim-
plicity and ease of decision quality analysis in the compiler
(explained later). This design opens up space for describing
task selection policies such as fairness or priorities, and even
more sophisticated policies requiring joint consideration of
tasks and nodes.

State management. We enable developers to define and ini-
tialize internal states in the State section, and expose 3 hook
points in the task lifecycle (annotated in Figure 3) for devel-
opers to express state update logic: (1) OnArrival, the mo-
ment when a task comes into the scheduler. (2) OnDispatch:
the moment when a scheduling decision is finalized, and
(3) OnFinish, the moment when a task is completed. The
reason behind this design choice is that lots of common
scheduling policies contain logic beyond the expressibility
of purely declarative, side-effect-free abstraction. For exam-
ple, even a simple round-robin policy for load balancing
requires a counter that increments every time a new assign-
ment is made. Therefore, supporting explicit state manage-
ment across these lifecycle stages is essential for capturing a
wide range of realistic scheduling behaviors.

HotNets "25, November 17-18, 2025, College Park, MD, USA

1 Task:
2 tenant: string
3 resource_vec: vec<float>

(a) Task Format

1 State:
2 alloc: map<string, vec<float>>
3 capacity: vec<float> = [1.5, 2.0, 1.0]

s Score(task, node): [limit=1.2]

tscore = max(alloc[task.tenant] / capacity)
8 nscore = get_load(node)
9 return tscore * nscore

11 OnDispatch(task, node):
12 alloc[task.tenant] += task.resource_vec

14 OnFinish(task, node):
15 alloc[task.tenant] -= task.resource_vec

(b) Scheduling Policy

Figure 4: DRF-LB Scheduling Policy Specification

Figure 4 describes the DRF-LB policy in § 2. The Task
struct includes 2 scheduling-related fields: the tenant send-
ing the task, and the resource vector it requires for execu-
tion. The scheduler declares a map alloc maintaining per-
tenant resource allocation vectors, which are updated on task
dispatching and completion (specified in OnDispatch and
OnFinish hook points). The Score function computes the
score by combining the task submitter’s dominant resource
share and the load of the target node. The 1imit annotation
is used for quality analysis and will be explained later.

5.2 Compiler

Taking the scheduling policy specification and the statistics
collected by the monitor (e.g., task incoming rate, network
latency, historical performance profilings) as input, the com-
piler is responsible for finding and generating optimized
implementations. Internally, after converting the specifica-
tion into IR, the compiler divides the program into smaller
execution units. (For example, in Figure 4b, Line 7 and Line 8
can be considered as separate execution units.) Then the com-
piler explores optimization opportunities from the following
aspects to generate implementation plans:

e Logic placement: For each execution unit, the compiler
considers which scheduler the unit should be placed in.
Fully centralized and fully decentralized architectures
can be regarded as two special cases of placement

HotNets "25, November 17-18, 2025, College Park, MD, USA

decisions. Smartly distributing part of the logic (i.e.,
hybrid architecture) can increase throughput without
hurting decision accuracy.

e Operation approximation: Certain operations, under
specific conditions, can be approximated with accept-
able accuracy loss and decreased latency. For example,
if a state is not changing rapidly, remote query of that
state could be approximated as querying a local cache
and updating the cache in the background periodically.
The famous power-of-2 choices [24] can also be con-
sidered as an approximation for the global minimum
by reducing the number of candidates. The compiler
follows a rule-based approach, searching for matching
patterns in the program and trying to apply approxi-
mations to optimize performance.

The compiler periodically evaluates potential implemen-
tation plans on 3 performance metrics: latency, throughput,
and quality. End-to-end scheduling latency is estimated by
summing up the estimated latencies of each execution unit
based on profiling statistics provided by the monitor and
approximation strategies applied to that unit. With latency
results, throughput can be estimated mathematically in the
following way: suppose the policy contains a set of execu-
tion units U = U, U Uy, where U, and Uy are units planned
to be placed on centralized and decentralized schedulers,
respectively. Then,

ThroughPUtestimated
) { 1 #Decentralized Scheduler}
= min ,
Yueu, Latency(u) ZueUd Latency(u)

We quantify scheduling quality as the competitive ratio be-
tween scores of (hypothetical) ideal decisions and implemen-
tation decisions. Specifically, we emulate several rounds of
scheduling decisions based on the traced historical workload.
For ideal decisions, scores are computed with omniscient
state values at that moment, while for the implementation
decisions, computations are based on restricted values ac-
cording to the optimizations. For example, if the implemen-
tation places all logic into decentralized schedulers, then
schedulers cannot see non-local tasks waiting for schedul-
ing. Values of some discrete states (e.g., counter) can be fully
rebuilt by replaying the traced events, while some real-time
values cannot be recovered for arbitrary moments. For the
latter case, the compiler computes an approximate value for
a given moment by adding an estimated A to the most recent
traced value. After getting the ideal and the implementa-
tion decisions, the competitive ratio is computed as the ideal
score ratio of the two decisions.

Wang et al.
500

0

9_':3'450

5

2400 £ozoes e i

3 y = Centralized

8 350 - Decentralized

/ Hybrid
300 L
300 350 400 450 500 550 600 650 700 750 800 850
Task Incoming Rate (req/s)
(a) Goodput Estimation
1.00
1.4
x o
[=
° 1.3
£0.95 .)
I — Centralized @
?E) ————-— Decentralized 1'2:3%
£ Hybrid g
£0.90 ybri 11E
o o
rrrrrrrr 1.0

5
300 350 400 450 500 550 600 650 700 750 800 850
Task Incoming Rate (req/s)

(b) Competitive Ratio Estimation. Solid lines are JFI and dashed lines
are competitive ratios.

Figure 5: Evaluations of the compiler’s ability to es-
timate implementation performance. Solid lines are
execution results (same as § 2) and dashed lines are
compiler estimations.

Formally, for any moment, if (figeat Nidear) and (timp, Mimp1)
are ideal and implementation decisions, respectively, i.e.,

(tideals Nideal) = arg min Score;geqi (task, node)

(task,node)

(timpl’ nimpl) =arg min

Score; task, node
(task,node) lmpl()

Then
Scorejgeal (timpl: nimpl)
Scoreideal (tideal: nideal)

The closer the ratio is to 1, the closer scheduling decisions
are to ideal ones, indicating better decision quality. We allow
developers to annotate a ratio limit for the Score function,
which represents the maximum decision quality drop they
can tolerate. The compiler will filter out implementation
plans with a competitive ratio larger than the limit, and select
one from the rest with minimum latency and throughput
capable of handling the current workload rate.

Competitive Ratio =

6 Preliminary Evaluation

We built a prototype framework consisting of a compiler that
takes in scheduling policies written in DSL and evaluates
implementation plans, plus a monitor that traces statistics

Programmable and Adaptive Scheduling for Distributed Systems

and scheduling-related events. In our evaluation, we run the
same workload as the one in § 2 under various task incoming
rates, and focus on whether the goodput and competitive
ratio estimations computed by the compiler can reflect all
the properties we observed in § 2.

Figure 5 presents the results. Figure 5a shows that goodput
estimations based on profiled latency statistics closely match
the actual values. In Figure 5b, we observe that for centralized
and hybrid implementations that rigorously enforce fairness,
the estimated competitive ratio remains consistently close
to 1. For decentralized implementation, the competitive ra-
tio starts to increase precisely at the point when fairness
degrades, and they share the same trend. The evaluation
demonstrates that our estimations serve as reliable guidance
for the compiler to analyze the properties of implementa-
tions.

7 Related Works

Scheduling Abstractions. Designing expressive and con-
cise abstractions for scheduling has been extensively studied
in distributed systems [7, 31, 32], operating systems [15, 20],
and high-performance computing [16, 33], from which we
draw lots of inspiration for our design. However, these ab-
stractions remain limited in expressiveness, do not utilize
high-level semantics for implementation optimization, or
have significantly different concerns because of domain gaps.

Scheduling Architecture. Previous works have proposed
various kinds of scheduling architectures. Mesos [14] di-
vides a cluster into partitions, allowing each partition to run
separate scheduling policies. Omega [30] adopts a decentral-
ized architecture with shared states for synchronization and
lock-free concurrency control. Mercury [21] and Hawk [10]
combine centralized and decentralized schedulers by assign-
ing high-priority tasks to the former and best-effort tasks to
the latter. These works, while excelling at specific scenarios,
are not flexible enough to deal with various workloads, and
do not expose abstractions for expressing or composing new
policies.

Scheduling Optimization. There’s a rich line of work
focusing on scheduling overhead reduction. For example,
Sparrow [29] uses power-of-two choices and batch prob-
ing to reduce latency in decentralized schedulers. Firma-
ment [13] applies algorithmic optimizations to min-cost-max-
flow problems to increase scheduling scalability. POP [26]
and DeDe [34] further accelerate the resource allocation
computation by applying domain-specific heuristics. These
efforts can be integrated into our compiler as potential opti-
mizations, but our focus on decoupling policy from imple-
mentation is orthogonal to this line of work.

HotNets "25, November 17-18, 2025, College Park, MD, USA

8 Conclusion

We propose a new approach to scheduling in distributed sys-
tems that decouples what scheduling logic is implemented
from how and where it is executed. By enabling developers
to specify high-level policies in a domain-specific language
and using a compiler to generate optimized, adaptive imple-
mentations, our framework addresses two fundamental limi-
tations of current systems: limited expressiveness in policy
and suboptimal performance due to rigid implementations.
Our early results demonstrate that deployment architecture
has a significant impact on both scheduling quality and sys-
tem throughput, and that compiler-driven adaptation can
navigate these trade-offs.

Acknowledgments

We thank the HotNets reviewers and our shepherd, Scott
Shenker, for their valuable feedback. This work was sup-
ported by UW FOCI and its partners (Alibaba, Amazon, Cisco,
Google, Microsoft, and VMware), and by NSF Grant 2402695.

References

[1] 2021. On the In-Depth Cluster Scheduling and Manage-
ment. https://www.alibabacloud.com/blog/on-the-in-depth-cluster-
scheduling-and-management_598012.

[2] 2025. Kubernetes Scheduler. https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/.

[3] 2025. Kubernetes Scheduling Framework. https://kubernetes.io/docs/
concepts/scheduling-eviction/scheduling-framework/.

[4] 2025. llm-d: a Kubernetes-native high-performance distributed LLM
inference framework. https://llm-d.ai/.

[5] 2025. Ray Scheduling. https://docs.ray.io/en/latest/ray-core/
scheduling/index.html.

[6] 2025. Uber’s Journey to Ray on Kubernetes: Resource Man-

agement. https://www.uber.com/blog/ubers-journey-to-ray-on-

kubernetes-resource-management/.

Romil Bhardwaj, Alexey Tumanov, Stephanie Wang, Richard Liaw,

Philipp Moritz, Robert Nishihara, and Ion Stoica. 2022. ESCHER:

expressive scheduling with ephemeral resources. In Proceedings of the

2022 ACM Symposium on Cloud Computing. 47-62.

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-

ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and

coordinated scheduling for cloud-scale computing. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

14). 285-300.

Arnab Choudhury, Yang Wang, Tuomas Pelkonen, Kutta Srinivasan,

Abha Jain, Shenghao Lin, Delia David, Siavash Soleimanifard, Michael

Chen, Abhishek Yadav, et al. 2024. MAST: Global scheduling of

ML training across geo-distributed datacenters at hyperscale. In 18th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 24). 563-580.

[10] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid datacenter scheduling. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). 499-510.

[11] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017.
Microservices: yesterday, today, and tomorrow. Present and Ulterior
Software Engineering (2017), 195-216.

[7

—

[8

[}

[9

—

https://www.alibabacloud.com/blog/on-the-in-depth-cluster-scheduling-and-management_598012
https://www.alibabacloud.com/blog/on-the-in-depth-cluster-scheduling-and-management_598012
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://llm-d.ai/
https://docs.ray.io/en/latest/ray-core/scheduling/index.html
https://docs.ray.io/en/latest/ray-core/scheduling/index.html
https://www.uber.com/blog/ubers-journey-to-ray-on-kubernetes-resource-management/
https://www.uber.com/blog/ubers-journey-to-ray-on-kubernetes-resource-management/

HotNets "25, November 17-18, 2025, College Park, MD, USA

[12] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant resource fairness: Fair al-
location of multiple resource types. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11).
Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and
Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling
at scale. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 99-115.
[14] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos:
A platform for fine-grained resource sharing in the data center. In 8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 11).
[15] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and
Christos Kozyrakis. 2021. ghost: Fast & flexible user-space delegation
of linux scheduling. In Proceedings of the ACM 28th Symposium on
Operating Systems Principles. 588-604.
Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc,
and Jonathan Ragan-Kelley. 2022. Exocompilation for productive
programming of hardware accelerators. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation. 703-718.
Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: fair scheduling for
distributed computing clusters. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. 261-276.
Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. 1984. A
quantitative measure of fairness and discrimination. Eastern Research
Laboratory, Digital Equipment Corporation, Hudson, MA 21, 1 (1984),
2022-2023.
Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).
Kostis Kaffes, Jack Tigar Humphries, David Maziéres, and Christos
Kozyrakis. 2021. Syrup: User-defined scheduling across the stack. In
Proceedings of the ACM 28th Symposium on Operating Systems Principles.
605-620.
Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hybrid
centralized and distributed scheduling in large shared clusters. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). 485-497.
[22] Yuangi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guo-
qing Harry Xu, and Ravi Netravali. 2020. Reducto: On-camera filtering
for resource-efficient real-time video analytics. In Proceedings of the
2020 ACM SIGCOMM Conference. 359-376.
Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning scheduling al-
gorithms for data processing clusters. In Proceedings of the 2019 ACM
SIGCOMM Conference. 270-288.
Michael Mitzenmacher. 2002. The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and Distributed Systems
12, 10 (2002), 1094-1104.
Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing {Al} applications. In 13th USENIX symposium on operating systems
design and implementation (OSDI 18). 561-577.

[13

—_

(16

—

(17

—

(18

[t

(19

[’

[20

=

(21

—

[23

—_

[24

=

[25

[

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Wang et al.

Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft,
Akshay Agrawal, Srikanth Kandula, Stephen Boyd, and Matei Za-
haria. 2021. Solving large-scale granular resource allocation problems
efficiently with pop. In Proceedings of the ACM 28th Symposium on
Operating Systems Principles. 521-537.

Jason Nieh, Christopher Vaill, and Hua Zhong. 2001. Virtual-time
round-robin: an O (1) proportional share scheduler.. In 2001 USENIX
Annual Technical Conference (USENIX ATC 01). 245-259.

Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkatara-
man, Reynold Xin, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica.
2013. The case for tiny tasks in compute clusters. In 14th Workshop on
Hot Topics in Operating Systems (HotOS XIV).

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: distributed, low latency scheduling. In Proceedings of the
ACM 24th Symposium on Operating Systems Principles. 69-84.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. 2013. Omega: flexible, scalable schedulers for large com-
pute clusters. In Proceedings of the 8th ACM European Conference on
Computer Systems. 351-364.

Lalith Suresh, Jodo Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina
Narodytska, Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain,
and Michael Gasch. 2020. Building scalable and flexible cluster man-
agers using declarative programming. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 827-844.
Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch,
Mor Harchol-Balter, and Gregory R Ganger. 2016. TetriSched: global
rescheduling with adaptive plan-ahead in dynamic heterogeneous
clusters. In Proceedings of the 11st European Conference on Computer
Systems. 1-16.

Anjiang Wei, Rohan Yadav, Hang Song, Wonchan Lee, Ke Wang, and
Alex Aiken. 2025. Mapple: A Domain-Specific Language for Map-
ping Distributed Heterogeneous Parallel Programs. arXiv preprint
arXiv:2507.17087 (2025).

Zhiying Xu, Minlan Yu, and Francis Y Yan. 2025. Decouple and decom-
pose: Scaling resource allocation with DeDe. In 19th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 25).
Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceedings of the ACM 24th Sym-
posium on Operating Systems Principles. 423-438.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. 2017. Live video analyt-
ics at scale with approximation and delay-tolerance. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). 377-392.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun,
Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica,
Joseph E Gonzalez, et al. 2024. SGlang: Efficient execution of structured
language model programs. Advances in Neural Information Processing
Systems 37 (2024), 62557-62583.

	Abstract
	1 Introduction
	2 Motivating Example: DRF-LB
	3 Rethinking Scheduling for Distributed Systems
	4 Key Research Questions
	5 A Potential Approach
	5.1 Programming Abstractions
	5.2 Compiler

	6 Preliminary Evaluation
	7 Related Works
	8 Conclusion
	References

