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RPC communication tax

RPC protocol (w/o ANFs) ANF processing (Envoy)
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The opportunity
End-to-end path is controlled by the same entity

⇒ Don’t need a stack of standard protocols

⇒ Can tightly couple the host stack and ANFs
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Key research questions

How to specify RPC communication requirements?

How can we enable efficient ANF execution?

How to coordinate host stack and ANF processing?



match rpc-schema:

GET => unreliable()

SET => reliable()—>ordered()

firewall() —> session_tracker()

firewall():

   user = get(rpc, 'user')

   match get(firewall_rules, user):

       ALLOW => send(rpc)

       DENY|NONE => drop()

…

Transport [NetBlocks]

ANFs [AppNet]
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ANF-aware RPC serialization

firewall():

   user = get(rpc, 'user')

   …

rpc:

  name: str

  user: str

firewall:

   user = rpc[1..rpc[0]]

   …

user.len user.val name.val



(Super) Preliminary results
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Building closed-world networks
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Recap

RPC communication is taxed heavily by 
protocol layering and loose ANF coupling

We can drive the tax to near zero by 
○ Specifying requirements at a high level
○ Auto-generating a flat stack and ANFs
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