
Rethinking RPC Communication for
Microservices-based Applications

Xiangfeng Zhu Yang Zhou Yuyao Wang Xiangyu Gao

Arvind Krishnamurthy Sam Kumar Ratul Mahajan Danyang Zhuo

gRPC

HTTP

TCP

IP

A

RPC communication today

B
gRPC

HTTP

TCP

IP

ANFs

HTTP

TCP

IP

RPC communication tax

RPC protocol (w/o ANFs) ANF processing (Envoy)

5x

gRPC
HTTP
TCP
IP

A B
gRPC
HTTP
TCP
IP

ANFs
HTTP
TCP
IP

The opportunity
End-to-end path is controlled by the same entity

⇒ Don’t need a stack of standard protocols

⇒ Can tightly couple the host stack and ANFs

A B

Transport

IP

ANFs

IP

Transport

IP

RPC communication
requirements

Key research questions

How to specify RPC communication requirements?

How can we enable efficient ANF execution?

How to coordinate host stack and ANF processing?

match rpc-schema:

GET => unreliable()

SET => reliable()—>ordered()

firewall() —> session_tracker()

firewall():

 user = get(rpc, 'user')

 match get(firewall_rules, user):

 ALLOW => send(rpc)

 DENY|NONE => drop()

…

Transport [NetBlocks]

ANFs [AppNet]

A B

Transport

IP

ANFs

IP

Transport

IP

GET:

 name: str

 user: str

RPC
schema

ANF-aware RPC serialization

firewall():

 user = get(rpc, 'user')

 …

rpc:

 name: str

 user: str

firewall:

 user = rpc[1..rpc[0]]

 …

user.len user.val name.val

(Super) Preliminary results

Ping Firewall Session
tracker Pong

8x

Building closed-world networks

Low
dev effort

High
performance

Application
customization

Building closed-world networks

General
purpose

abstractions

Application
defined

networks

Recap

RPC communication is taxed heavily by
protocol layering and loose ANF coupling

We can drive the tax to near zero by
○ Specifying requirements at a high level
○ Auto-generating a flat stack and ANFs

gRPC
HTTP
TCP
IP

A B
gRPC
HTTP
TCP
IP

ANFs
HTTP
TCP
IP

A B

IP
ANFs

IP
Transport

IP

Transport

